Basic Building Blocks
To get started, first we need to understand that a ZIO Schema is basically built-up from these three
sealed traits: Record[R]
, Enum[A]
and Sequence[Col, Elem]
, along with the case class Primitive[A]
. Every other type is just a specialisation of one of these (or not relevant to get you started).
The core data type of ZIO Schema is a Schema[A]
which is invariant in A
by necessity, because a Schema allows us to derive operations that produce an A
but also operations that consume an A
and that imposes limitations on the types of transformation operators and composition operators that we can provide based on a Schema
.
It looks kind of like this (simplified):
sealed trait Schema[A] { self =>
def zip[B](that: Schema[B]): Schema[(A, B)]
def transform[B](f: A => B, g: B => A): Schema[B]
}
Primitives​
To describe scalar data type A
, we use the Primitive[A]
data type which basically is a wrapper around StandardType
:
case class Primitive[A](standardType: StandardType[A]) extends Schema[A]
Primitive values are represented using the Primitive[A]
type class and represent the elements that we cannot further define through other means. If we visualize our data structure as a tree, primitives are the leaves.
For a list of all standard types (and therefore primitive types) with built-in support, please see the standard type reference
Inside Schema
's companion object, we have an implicit conversion from StandardType[A]
to Schema[A]
:
object Schema {
implicit def primitive[A](implicit standardType: StandardType[A]): Schema[A] = ???
}
So we can easily create a Schema
for a primitive type A
either by calling Schema.primitive[A]
or by calling Schema.apply[A]
:
val intSchema1: Schema[Int] = Schema[Int]
val intSchema2: Schema[Int] = Schema.primitive[Int]
Fail​
To represents the absence of schema information for the given A
type, we can use Schema.fail
constructor, which creates the following schema:
object Schema {
case class Fail[A](
message: String,
annotations: Chunk[Any] = Chunk.empty
) extends Schema[A]
}
Collections​
Sequence​
Often we have a type that is a collection of elements. For example, we might have a List[User]
. This is called a Sequence
and is represented using the Sequence[Col, Elem, I]
type class:
object Schema {
sealed trait Collection[Col, Elem] extends Schema[Col]
final case class Sequence[Col, Elem, I](
elementSchema: Schema[Elem],
fromChunk: Chunk[Elem] => Col,
toChunk: Col => Chunk[Elem],
override val annotations: Chunk[Any] = Chunk.empty,
identity: I
) extends Collection[Col, Elem]
}
The Sequence
can be anything that can be isomorphic to a list.
Here is an example schema for list of Person
s:
import zio._
import zio.schema._
import zio.schema.Schema._
case class Person(name: String, age: Int)
object Person {
implicit val schema: Schema[Person] = DeriveSchema.gen[Person]
}
val personListSchema: Schema[List[Person]] =
Sequence[List[Person], Person, String](
elementSchema = Schema[Person],
fromChunk = _.toList,
toChunk = i => Chunk.fromIterable(i),
annotations = Chunk.empty,
identity = "List"
)
ZIO Schema has Schema.list[A]
, Schema.chunk[A]
and Schema.vector[A]
constructors that create Schema[List[A]]
, Schema[Chunk[A]]
and Schema[Vector[A]]
for us:
import zio._
import zio.schema._
import zio.schema.Schema._
case class Person(name: String, age: Int)
object Person {
implicit val schema: Schema[Person] = DeriveSchema.gen[Person]
implicit val listSchema: Schema[List[Person]] = Schema.list[Person]
implicit val chunkSchema: Schema[Chunk[Person]] = Schema.chunk[Person]
implicit val vectorSchema: Schema[Vector[Person]] = Schema.vector[Person]
}
Map​
Likewise, we can have a type that is a map of keys to values. ZIO Schema represents this using the following type class:
object Schema {
sealed trait Collection[Col, Elem] extends Schema[Col]
case class Map[K, V](
keySchema: Schema[K],
valueSchema: Schema[V],
override val annotations: Chunk[Any] = Chunk.empty
) extends Collection[scala.collection.immutable.Map[K, V], (K, V)]
}
It stores the key and value schemas. Like Sequence
, instead of using Map
directly, we can use the Schema.map[K, V]
constructor:
import zio._
import zio.schema._
import zio.schema.Schema._
case class Person(name: String, age: Int)
object Person {
implicit val schema: Schema[Person] = DeriveSchema.gen[Person]
implicit val mapSchema: Schema[scala.collection.immutable.Map[String, Person]] =
Schema.map[String, Person]
}
Set​
The Set
type class is similar to Sequence
and Map
. It is used to represent a schema for a set of elements:
object Schema {
sealed trait Collection[Col, Elem] extends Schema[Col]
case class Set[A](
elementSchema: Schema[A],
override val annotations: Chunk[Any] = Chunk.empty
) extends Collection[scala.collection.immutable.Set[A], A]
}
To create a Schema
for a Set[A]
, we can use the above type class directly or use the Schema.set[A]
constructor:
import zio._
import zio.schema._
import zio.schema.Schema._
case class Person(name: String, age: Int)
object Person {
implicit val schema: Schema[Person] = DeriveSchema.gen[Person]
implicit val setSchema: Schema[scala.collection.immutable.Set[Person]] =
Schema.set[Person]
}
Records​
Our data structures usually are composed of a lot of types. For example, we might have a User
type that has a name
field, an age
field, an address
field, and a friends
field.
case class User(name: String, age: Int, address: Address, friends: List[User])
This is called a product type in functional programming. The equivalent of a product type in ZIO Schema is called a record.
In ZIO Schema such a record would be represented using the Record[R]
typeclass:
object Schema {
sealed trait Field[R, A] {
type Field <: Singleton with String
def name: Field
def schema: Schema[A]
}
sealed trait Record[R] extends Schema[R] {
def id: TypeId
def fields: Chunk[Field[_]]
def construct(fieldValues: Chunk[Any]): Either[String, R]
}
}
ZIO Schema has specialized record types for case classes, called CaseClass1[A, Z]
, CaseClass2[A1, A2, Z]
, ..., CaseClass22
. Here is the definition of apply
method of CaseClass1
and CaseClass2
:
sealed trait CaseClass1[A, Z] extends Record[Z]
object CaseClass1 {
def apply[A, Z](
id0: TypeId,
field0: Field[Z, A],
defaultConstruct0: A => Z,
annotations0: Chunk[Any] = Chunk.empty
): CaseClass1[A, Z] = ???
}
object CaseClass2 {
def apply[A1, A2, Z](
id0: TypeId,
field01: Field[Z, A1],
field02: Field[Z, A2],
construct0: (A1, A2) => Z,
annotations0: Chunk[Any] = Chunk.empty
): CaseClass2[A1, A2, Z] = ???
}
As we can see, they take a TypeId
, a number of fields of type Field
, and a construct function. The TypeId
is used to uniquely identify the type. The Field
is used to store the name of the field and the schema of the field. The construct
is used to construct the type from the field values.
Here is an example of defining schema for Person
data type:
import zio.schema._
final case class Person(name: String, age: Int)
object Person {
implicit val schema: Schema[Person] =
Schema.CaseClass2[String, Int, Person](
id0 = TypeId.fromTypeName("Person"),
field01 =
Schema.Field(
name0 = "name",
schema0 = Schema[String],
get0 = _.name,
set0 = (p, x) => p.copy(name = x)
),
field02 =
Schema.Field(
name0 = "age",
schema0 = Schema[Int],
get0 = _.age,
set0 = (person, age) => person.copy(age = age)
),
construct0 = (name, age) => Person(name, age),
)
}
There is also the GenericRecord
which is used to either ad-hoc records or records that have more than 22 fields:
object Schema {
sealed case class GenericRecord(
id: TypeId,
fieldSet: FieldSet,
override val annotations: Chunk[Any] = Chunk.empty
) extends Record[ListMap[String, _]]
}
Enumerations​
Other times, you might have a type that represents a list of different types. For example, we might have a type, like this:
sealed trait PaymentMethod
object PaymentMethod {
final case class CreditCard(number: String, expirationMonth: Int, expirationYear: Int) extends PaymentMethod
final case class WireTransfer(accountNumber: String, bankCode: String) extends PaymentMethod
}
In functional programming, this kind of type is called a sum type:
- In Scala 2, this is called a sealed trait.
- In Scala3, this is called an enum.
In ZIO Schema we call these types enumeration
types, and they are represented using the Enum[A]
type class.
object Schema {
sealed trait Enum[Z] extends Schema[Z]
}
It has specialized types Enum1[A, Z]
, Enum2[A1, A2, Z]
, ..., Enum22[A1, A2, ..., A22, Z]
for enumerations with 1, 2, ..., 22 cases. Here is the definition of Enum1
and Enum2
:
sealed case class Enum1[A, Z](
id: TypeId,
case1: Case[Z, A],
annotations: Chunk[Any] = Chunk.empty
) extends Enum[Z]
sealed case class Enum2[A1, A2, Z](
id: TypeId,
case1: Case[Z, A1],
case2: Case[Z, A2],
annotations: Chunk[Any] = Chunk.empty
) extends Enum[Z]
// Enum3, Enum4, ..., Enum22
}
If the enumeration has more than 22 cases, we can use the EnumN
type class:
object Schema {
sealed case class EnumN[Z, C <: CaseSet.Aux[Z]](
id: TypeId,
caseSet: C,
annotations: Chunk[Any] = Chunk.empty
) extends Enum[Z]
}
It has a simple constructor called Schema.enumeration
:
object Schema {
def enumeration[A, C <: CaseSet.Aux[A]](id: TypeId, caseSet: C): Schema[A] = ???
}
Optionals​
To create a Schema
for optional values, we can use the Optional
type class:
object Schema {
case class Optional[A](
schema: Schema[A],
annotations: Chunk[Any] = Chunk.empty
) extends Schema[Option[A]]
}
Using the Schema.option[A]
constructor, makes it easier to do so:
val option: Schema[Option[Person]] = Schema.option[Person]
Either​
Here is the same but for Either
:
object Schema {
case class Either[A, B](
left: Schema[A],
right: Schema[B],
annotations: Chunk[Any] = Chunk.empty
) extends Schema[scala.util.Either[A, B]]
}
We can use Schema.either[A, B]
to create a Schema
for scala.util.Either[A, B]
:
val eitherPersonSchema: Schema[scala.util.Either[String, Person]] =
Schema.either[String, Person]
Tuple​
Each schema has a Schema#zip
operator that allows us to combine two schemas and create a schema for a tuple of the two types:
object Schema {
def zip[B](that: Schema[B]): Schema[(A, B)] =
Schema.Tuple2(self, that)
}
It is implemented using the Schema.Tuple2
type class:
object Schema {
final case class Tuple2[A, B](
left: Schema[A],
right: Schema[B],
annotations: Chunk[Any] = Chunk.em
pty
) extends Schema[(A, B)]
}
ZIO Schema also provides implicit conversions for tuples of arity 2, 3, ..., 22:
object Schema {
implicit def tuple2[A, B](implicit c1: Schema[A], c2: Schema[B]): Schema[(A, B)] =
c1.zip(c2)
implicit def tuple3[A, B, C](implicit c1: Schema[A], c2: Schema[B], c3: Schema[C]): Schema[(A, B, C)] =
c1.zip(c2).zip(c3).transform({ case ((a, b), c) => (a, b, c) }, { case (a, b, c) => ((a, b), c) })
// tuple3, tuple4, ..., tuple22
}
So we can easily create a Schema
for a tuple of n elements, just by calling Schema[(A1, A2, ..., An)]
:
import zio.schema._
val tuple2: Schema[(String, Int)] = Schema[(String, Int)]
val tuple3: Schema[(String, Int, Boolean)] = Schema[(String, Int, Boolean)]