HttpCodec
In ZIO HTTP when we work with HTTP requests and responses, we are not dealing with raw bytes but with structured data. This structured data is represented by the Request
and Response
types. But under the hood, these types are serialized and deserialized to and from raw bytes. This process is handled by HTTP Codecs. We can think of HttpCodec
as a pair of functions both for encoding and decoding requests and responses:
sealed trait HttpCodec[-AtomTypes, Value] {
final def decodeRequest(request: Request)(implicit trace: Trace): Task[Value]
final def decodeResponse(response: Response)(implicit trace: Trace): Task[Value]
final def encodeRequest(value: Value): Request
final def encodeResponse[Z](value: Value, outputTypes: Chunk[MediaTypeWithQFactor]): Response
}
HTTP messages consist of various parts, such as headers, body, and status codes. ZIO HTTP needs to know how to encode and decode each part of the HTTP message. So it has a set of built-in codecs that each one is responsible for a specific part of the HTTP message.
Built-in Codecs​
ZIO HTTP provides a set of built-in codecs for common HTTP message parts. Here is a list of built-in codecs:
type ContentCodec[A] = HttpCodec[HttpCodecType.Content, A]
type HeaderCodec[A] = HttpCodec[HttpCodecType.Header, A]
type MethodCodec[A] = HttpCodec[HttpCodecType.Method, A]
type QueryCodec[A] = HttpCodec[HttpCodecType.Query, A]
type StatusCodec[A] = HttpCodec[HttpCodecType.Status, A]
These codecs are nothing different from the HttpCodec
type we saw earlier. They are just specialized versions of HttpCodec
for specific parts of the HTTP message.
ContentCodec​
The ContentCodec[A]
is a codec for the body of the HTTP message with type A
. To create a ContentCodec
we can use the HttpCodec.content
method. If we want to have codec for a stream of content we can use HttpCodec.contentStream
or HttpCodec.binaryStream
:
import zio.http._
import zio.http.codec._
val stringCodec : ContentCodec[String] = HttpCodec.content[String]
val contentTypedCodec : ContentCodec[String] = HttpCodec.content[String](MediaType.text.plain)
val namedContentCodec : ContentCodec[Int] = HttpCodec.content[Int](name = "age")
val namedContentTypedCodec: ContentCodec[Int] = HttpCodec.content[Int](name = "age", MediaType.text.plain)
HttpCodecs are composable, we can use ++
to combine two codecs:
val nameAndAgeCodec: ContentCodec[(String, Int)] = HttpCodec.content[String]("name") ++ HttpCodec.content[Int]("age")
We can also transform
a codec to another codec. In the following example, we transform the previous codec, which is a codec for a tuple of (String, Int)
, to a codec for a case class User
:
val userContentCodec: ContentCodec[User] =
nameAndAgeCodec.transform[User] {
case (name: String, age: Int) => User(name, age)
}(user => (user.name, user.age))
More details about transforming codecs will be discussed later in this page.
Another simple way to create a ContentCodec
for a case class is to use ZIO Schema. By using ZIO Schema we can derive a schema for a case class and then use it to create a ContentCodec
:
import zio.http.codec._
import zio.schema._
case class User(name: String, age: Int)
object User {
implicit val schema = DeriveSchema.gen[User]
}
val userCodec: ContentCodec[User] = HttpCodec.content[User]
To create a codec for a stream of content we can use HttpCodec.contentStream
:
import zio.stream._
import zio.http.codec._
val temperature: ContentCodec[ZStream[Any, Nothing, Double]] =
HttpCodec.contentStream[Double](name = "temperature")
To create a codec for a binary stream we can use HttpCodec.binaryStream
:
import zio.stream._
import zio.http.codec._
val binaryStream: ContentCodec[ZStream[Any, Nothing, Byte]] =
HttpCodec.binaryStream(name = "large-file")
HeaderCodec​
The HeaderCodec[A]
is a codec for the headers of the HTTP message with type A
. To create a HeaderCodec
we can use the HttpCodec.header
constructor:
import zio.http._
import zio.http.codec._
val acceptHeaderCodec: HeaderCodec[Header.Accept] = HttpCodec.header(Header.Accept)
Or we can use the HttpCodec.name
, which takes the name of the header as a parameter, which is useful for custom headers:
import zio.http._
import zio.http.codec._
import java.util.UUID
val acceptHeaderCodec: HeaderCodec[UUID] = HttpCodec.name[UUID]("X-Correlation-ID")
We can also create a codec that encode/decode multiple headers by combining them with ++
:
import zio.http._
import zio.http.codec._
val acceptHeaderCodec : HeaderCodec[Header.Accept] = HttpCodec.header(Header.Accept)
val contentTypeHeaderCodec: HeaderCodec[Header.ContentType] = HttpCodec.header(Header.ContentType)
val acceptAndContentTypeCodec: HeaderCodec[(Header.Accept, Header.ContentType)] =
acceptHeaderCodec ++ contentTypeHeaderCodec
MethodCodec​
The MethodCodec[A]
is a codec for the method of the HTTP message with type A
. We can use HttpCodec.method
which takes a Method
as a parameter to create a MethodCodec
:
import zio.http._
import zio.http.codec._
val getMethodCodec: HttpCodec[HttpCodecType.Method, Unit] = HttpCodec.method(Method.GET)
There are also predefined codecs for all the HTTP methods, e.g. HttpCodec.connect
, HttpCodec.delete
, HttpCodec.get
, HttpCodec.head
, HttpCodec.options
, HttpCodec.patch
, HttpCodec.post
, HttpCodec.put
, HttpCodec.trace
.
QueryCodec​
The QueryCodec[A]
is a codec for the query parameters of the HTTP message with type A
. To be able to encode and decode query parameters, ZIO HTTP provides a wide range of query codecs. If we are dealing with a single query parameter we can use HttpCodec.query
, HttpCodec.query[Boolean]
, HttpCodec.query[Boolean]
, and HttpCodec.queryTo
:
import zio.http._
import zio.http.codec._
import java.util.UUID
val nameQueryCodec : QueryCodec[String] = HttpCodec.query[String]("name") // e.g. ?name=John
val ageQueryCodec : QueryCodec[Int] = HttpCodec.query[Int]("age") // e.g. ?age=30
val activeQueryCodec: QueryCodec[Boolean] = HttpCodec.query[Boolean]("active") // e.g. ?active=true
// e.g. ?uuid=43abea9e-0b0e-11ef-8d07-e755ec5cd767
val uuidQueryCodec : QueryCodec[UUID] = HttpCodec.query[UUID]("uuid")
We can combine multiple query codecs with ++
:
If we have multiple query parameters we can use HttpCodec.queryAll
, HttpCodec.queryAllBool
, HttpCodec.queryAllInt
, and HttpCodec.queryAllTo
:
import zio._
import zio.http._
import zio.http.codec._
import java.util.UUID
val queryAllCodec : QueryCodec[Chunk[String]] = HttpCodec.query[Chunk[String]]("q") // e.g. ?q=one&q=two&q=three
val queryAllIntCodec : QueryCodec[Chunk[Int]] = HttpCodec.query[Chunk[Int]]("id") // e.g. ?ids=1&ids=2&ids=3
// e.g. ?uuid=43abea9e-0b0e-11ef-8d07-e755ec5cd767&uuid=43abea9e-0b0e-11ef-8d07-e755ec5cd768
val queryAllUUIDCodec: QueryCodec[Chunk[UUID]] = HttpCodec.query[Chunk[UUID]]("uuid")
StatusCodec​
The StatusCodec[A]
is a codec for the status code of the HTTP message with type A
. To create a StatusCodec
we can use the HttpCodec.status
method:
import zio.http._
import zio.http.codec._
val okStatusCodec: StatusCodec[Unit] = HttpCodec.status(Status.Ok)
Also, there are predefined codecs for various status codes, e.g. HttpCodec.Continue
, HttpCodec.Accepted
, HttpCodec.NotFound
, etc.
Operations​
The primary advantage of HttpCodec
is its composability, which means we can combine multiple codecs to create new ones. This is useful when we want to encode and decode multiple parts of the HTTP message, such as headers, body, and status codes; so we start by creating codecs for each part and then combine them to create a codec for the whole HTTP message.
Combining Codecs Sequentially​
By combining two codecs using the ++
operator, we can create a new codec that sequentially encodes/decodes from left to right:
import zio.http.codec._
// e.g. ?name=John&age=30
val queryCodec: QueryCodec[(String, Int)] = HttpCodec.query[String]("name") ++ HttpCodec.query[Int]("age")
Combining Codecs Alternatively​
There is also a |
operator that allows us to create a codec that can decode either of the two codecs. Assume we have two query codecs, one for q
and the other for query
. We can create a new codec that tries to decode q
first and if it fails, it tries to decode query
:
import zio.http.codec._
val eitherQueryCodec: QueryCodec[String] = HttpCodec.query[String]("q") | HttpCodec.query[String]("query")
Assume we have a request
import zio.http._
val request: Request = Request(url = URL.root.copy(queryParams = QueryParams("query" -> "foo")))
We can decode the query parameter using the decodeRequest
method:
import zio._
val result: Task[String] = eitherQueryCodec.decodeRequest(request)
Optional Codecs​
Sometimes we want to decode a part of the HTTP message only if it exists. We can use the optional
method to transform a codec to an optional codec:
import zio._
import zio.http._
import zio.http.codec._
val optionalQueryCodec: QueryCodec[Option[String]] = HttpCodec.query[String]("q").optional
val request = Request(url = URL.root.copy(queryParams = QueryParams("query" -> "foo")))
val result: Task[Option[String]] = optionalQueryCodec.decodeRequest(request)
Expecting a Specific Value​
To write a codec that only accepts a specific value, we can use the expect
method:
import zio._
import zio.http._
import zio.http.codec._
val expectHeaderValueCodec: HeaderCodec[Unit] = HttpCodec.name[String]("X-Custom-Header").expect("specific-value")
val request: Request = Request(headers = Headers("X-Custom-Header" -> "specific-value"))
val response: Task[Unit] = expectHeaderValueCodec.decodeRequest(request)
The above codec will only accept the request if the value of the header X-Custom-Header
is specific-value
.
Transforming Codecs​
HttpCodecs are invariant in their Value
type parameter, so to transform a codec of type A
to a codec of type B
, we need two functions, one for mapping A
to B
and the other for mapping B
to A
.
For example, assume we have a codec of type HttpCodec[HttpCodecType.Content, (String, Int)]
. If we want to transform it to a codec of type HttpCodec[HttpCodecType.Content, User]
, we require two functions:
- A function that maps a value of type
(String, Int)
to a value of typeUser
. - A function that maps a value of type
User
to a value of type(String, Int)
.
import zio._
import zio.http.codec._
case class User(name: String, age: Int)
val nameAndAgeCodec: ContentCodec[(String, Int)] = HttpCodec.content[String]("name") ++ HttpCodec.content[Int]("age")
val userContentCodec: ContentCodec[User] =
nameAndAgeCodec.transform[User] {
case (name: String, age: Int) => User(name, age)
}(user => (user.name, user.age))
Annotating Codecs​
HttpCodec has several methods for annotating codecs:
annotate
: To attach a metadata to the codec.named
: To attach a name to the codec.examples
: To attach examples to the codec.??
: To attach a documentation to the codec.
This additional information can be used for generating API documentation, e.g. OpenAPI.
Usage​
Having a codec for HTTP messages is useful when we want to program declaratively instead of imperative programming.
Let's compare these two programming styles in ZIO HTTP and see how we can benefit from using HttpCodec
for writing declarative APIs.
Imperative Programming​
When writing an HTTP API, we have to think about a function that takes a Request
and returns a Response
, i.e. the handler function. In imperative programming, we have to deal with the low-level details of how to extract the required information from the Request
, validate it, and finally construct the proper Response
. In such a way, we have to write all these logics step by step.
In the following example, we are going to write an API for a bookstore. The API has a single endpoint /books?id=<book-id>
that returns the book with the given id
as a query parameter. If the book is found, it returns a 200 OK
response with the book as the body. If the book is not found, it returns a 404 Not Found
response with an error message:
package example.endpoint.style
import zio._
import zio.schema.codec.JsonCodec.schemaBasedBinaryCodec
import zio.schema.{DeriveSchema, Schema}
import zio.http._
object ImperativeProgrammingExample extends ZIOAppDefault {
case class Book(title: String, authors: List[String])
object Book {
implicit val schema: Schema[Book] = DeriveSchema.gen[Book]
}
object BookRepo {
case class NotFoundError(message: String)
def find(id: String): ZIO[Any, NotFoundError, Book] =
if (id == "1")
ZIO.succeed(Book("Zionomicon", List("John A. De Goes", "Adam Fraser")))
else
ZIO.fail(NotFoundError("The requested book was not found!"))
}
val route: Route[Any, Response] =
Method.GET / "books" -> handler { (req: Request) =>
for {
id <- ZIO.fromOption(req.queryParam("id")).orElseFail(Response.badRequest("Missing query parameter id"))
books <- BookRepo.find(id).mapError(err => Response.notFound(err.message))
} yield Response.ok.copy(body = Body.from(books))
}
def run = Server.serve(route.toRoutes).provide(Server.default)
}
The type of handler in the above example is Handler[Any, Response, Request, Response]
, which means we have to write a function that takes a Request
and returns a Response
and in case of failure, it will return a failure value of type Response
. In the handler function, we have to manually extract the id
from the query parameters, then do the business logic to find the book with the given id
, and finally construct the proper Response
.
Declarative Programming​
In declarative programming, we can separate the two concerns from each other: the definition of the API and its implementation. By having the codecs for the HTTP messages, we can define how the Request
and Response
should look like and based on our requirements how they should be encoded and decoded. ZIO Http has the Endpoint
API that makes it easy to define the API in a declarative way by utilizing HttpCodec
. After defining the API using Endpoint
, we can implement it using the Endpoint#implement
method.
In the following example, we are going to rewrite the previous example using the Endpoint
API:
package example.endpoint.style
import zio._
import zio.schema.{DeriveSchema, Schema}
import zio.http._
import zio.http.codec._
import zio.http.endpoint.{AuthType, Endpoint}
object DeclarativeProgrammingExample extends ZIOAppDefault {
case class Book(title: String, authors: List[String])
object Book {
implicit val schema: Schema[Book] = DeriveSchema.gen
}
case class NotFoundError(message: String)
object NotFoundError {
implicit val schema: Schema[NotFoundError] = DeriveSchema.gen
}
object BookRepo {
def find(id: String): ZIO[Any, NotFoundError, Book] = {
if (id == "1")
ZIO.succeed(Book("Zionomicon", List("John A. De Goes", "Adam Fraser")))
else
ZIO.fail(NotFoundError("The requested book was not found!"))
}
}
val endpoint: Endpoint[Unit, String, NotFoundError, Book, AuthType.None] =
Endpoint(RoutePattern.GET / "books")
.query(HttpCodec.query[String]("id"))
.out[Book]
.outError[NotFoundError](Status.NotFound)
val getBookHandler: Handler[Any, NotFoundError, String, Book] =
handler(BookRepo.find(_))
val routes = endpoint.implementHandler(getBookHandler).toRoutes @@ Middleware.debug
def run = Server.serve(routes).provide(Server.default)
}
As we will see, we have declared a clear specification of the API and separately implemented it. The very interesting point about the implementation section is that it is not concerned with the low-level details of how to extract the required information from the Request
and how to construct the proper Response
. The implement
method takes a handler of type Handler[Any, NotFoundError, String, Book]
, which means we have to write a handler function that takes a String
and returns a Book
and in case of failure, it will return a NotFoundError
error. No manual decoding of Request
and no manual encoding of Response
is required. So in the handler function, we only have to focus on the business logic.