Skip to main content
Version: 2.x

Smart Assertions

The smart assertion is a simple way to assert both ordinary values and ZIO effects. It uses the assertTrue function, which uses macro under the hood.

Asserting Ordinary Values

In the following example, we assert simple ordinary values using the assertTrue method:

import zio._
import zio.test.{test, _}

test("sum"){
assertTrue(1 + 1 == 2)
}

We can assert multiple assertions inside a single assertTrue:

test("multiple assertions"){
assertTrue(
true,
1 + 1 == 2,
Some(1 + 1) == Some(2)
)
}

Asserting ZIO effects

The assertTrue method can also be used to assert ZIO effects:

import zio._
import zio.test.{test, _}

test("updating ref") {
for {
r <- Ref.make(0)
_ <- r.update(_ + 1)
v <- r.get
} yield assertTrue(v == 1)
}

Using assertTrue with for-comprehension style, we can think of testing as these three steps:

  1. Set up the test — In this section we should setup the system under test (e.g. Ref.make(0)).
  2. Running the test — Then we run the test scenario according to the test specification. (e.g ref.update(_ + 1))
  3. Making assertions about the test - Finally, we should assert the result with the right expectations (e.g. assertTrue(v == 1))

Assertion Operators

Each assertTrue returns a AssertResult, so they have the same operators as AssertResult. Here are some of the useful operators:

  1. && - This is the logical and operator to make sure that both assertions are true:
import zio.test._

test("&&") {
check(Gen.int <*> Gen.int) { case (x: Int, y: Int) =>
assertTrue(x + y == y + x) && assertTrue(x * y == y * x)
}
}
  1. || - This is the logical or operator to make sure that at least one of the assertions is true:
import zio.test._

suite("||")(
test("false || true") {
assertTrue(false) || assertTrue(true) // this will pass
},
test("true || false") {
assertTrue(true) || assertTrue(false) // this will pass
},
test("true || true") {
assertTrue(true) || assertTrue(true) // this will pass
},
test("false || false") {
assertTrue(false) || assertTrue(false) // this will false
},
)
  1. ! - This is the logical not operator to negate the assertion:
import zio.test._

suite("unary !") (
test("negate true") {
!assertTrue(true) // this will fail
},
test("negate false") {
!assertTrue(false) // this will pass
}
)
  1. implies - This is the logical implies operator to make sure that the first assertion implies the second assertion. It is equivalent to !p || q which is a conditional statement of the form "if p, then q" where p and q are propositions. The ==> operator is an alias for implies.
import zio.test._

suite("implies") (
test("true implies true")(
assertTrue(true) implies assertTrue(true) // this will pass
),
test("true implies false")(
assertTrue(true) implies assertTrue(false) // this will fail
),
test("false implies true")(
assertTrue(false) implies assertTrue(true) // this will pass
),
test("false implies false")(
assertTrue(false) implies assertTrue(false) // this will pass
),
)

The implies assertion is true if either the p is false or when both p and q are true:

PQP implies Q
truetruetrue
truefalsefalse
falsetruetrue
falsefalsetrue
  1. iff - This is the logical iff operator to make sure that the first assertion is true if and only if the second assertion is true. It is equivalent to (p implies q) && (q implies p). The <==> operator is an alias for iff.
import zio.test._

suite("iff") (
test("true iff true")(
assertTrue(true) iff assertTrue(true) // this will pass
),
test("true iff false")(
assertTrue(true) iff assertTrue(false) // this will fail
),
test("false iff true")(
assertTrue(false) iff assertTrue(true) // this will fail
),
test("false iff false")(
assertTrue(false) iff assertTrue(false) // this will pass
)
)

Here is the truth table for the iff operator:

PQP iff Q
truetruetrue
truefalsefalse
falsetruefalse
falsefalsetrue
  1. ??- We can add a custom message to the assertion using the ?? operator. This will be useful when assertion fails, and we want to provide more information about the failure:
import zio.test._

assertTrue(1 + 1 == 3) ?? "1 + 1 should be equal to 2"

Asserting Nested Values

There are several operators designed specifically for use within the assertTrue macro, enhancing the ease and readability of assertions. These operators, intended exclusively for the assertTrue macro, leverage the TestLens[A] type-class to access the underlying value of the type A.

We use the is extension method inside the assertTrue macro to convert the given value to a TestLens. Now no matter how deeply nested the value is, we can access the underlying values using extension method defined for TestLens values:

Testing Optional Values

There are two operators for testing optional values:

  1. TestLens#some - This operator is used to peek into the Some value:
import zio.test._

test("optional value is some(42)") {
val sut: Option[Int] = Some(40 + 2)
assertTrue(sut.is(_.some) == 42)
}
  1. TestLens#anything - This operator is used to assert that the value is Some:
import zio.test._

test("optional value is anything") {
val sut: Option[Int] = Some(42)
assertTrue(sut.is(_.anything))
}

Testing Either Values

  1. TestLens#left - This operator is used to peek into the Left value:
import zio.test._

test("TestLens#right") {
val sut: Either[Error, Int] = Right(40 + 2)
assertTrue(sut.is(_.right) == 42)
}
  1. TestLens#left - This operator is used to peek into the Left value:
import zio.test._

case class Error(errorMessage: String)

test("TestLens#left") {
val sut: Either[Error, Int] = Left(Error("Boom!"))
assertTrue(sut.is(_.left).errorMessage == "Boom!")
}
  1. TestLens#anything - This operator is used to assert that the value is Right:
import zio.test._

test("TestLens#anything") {
val sut: Either[Error, Int] = Right(42)
assertTrue(sut.is(_.anything))
}

Testing Exit Values

  1. TestLens#success - This operator transforms the Exit value to its success type A if it is a Exit.Success, otherwise it will fail. So this can be used for asserting the success value of the Exit:
import zio.Exit
import zio.test._

test("TestLens#success") {
val sut: Exit[Error, Int] = Exit.succeed(42)
assertTrue(sut.is(_.success) == 42)
}
  1. TestLens#failure - This operator transforms the Exit value to its failure type E if it is a Exit.Failure, otherwise it will fail. So this can be used for asserting the failure value of the Exit:
import zio.Exit
import zio.test._

case class Error(errorMessage: String)

test("TestLens#failure") {
val sut: Exit[Error, Int] = Exit.fail(Error("Boom!"))
assertTrue(sut.is(_.failure).errorMessage == "Boom!")
}
  1. TestLens#die - This operator transforms the Exit value to its die type E if it is a Exit.Die, otherwise it will fail. So this can be used for asserting the die value of the Exit:
import zio.Exit
import zio.test._

test("TestLens#die") {
val sut: Exit[Error, Int] = Exit.die(new RuntimeException("Boom!"))
assertTrue(sut.is(_.die).getMessage == "Boom!")
}
  1. TestLens#cause - This operator transforms the Exit value to its underlying Cause value if it has one otherwise it will fail. So this can be used for asserting the cause of the Exit:
import zio.{ZIO, Cause}
import zio.test._

test("TestLens#cause") {
for {
exit <- ZIO.failCause(Cause.fail("Boom!")).exit
} yield assertTrue(exit.is(_.cause) == Cause.fail("Boom!"))
}
// error: Error is already defined as case class Error
  1. TestLens#interrupt - This operator transforms the Exit value to its interrupt value if it is a Exit.Interrupt, otherwise it will fail. So this can be used for asserting the interrupt value of the Exit:
import zio.{durationInt, ZIO}
import zio.test._

test("TestLens#interrupt") {
for {
exit <- ZIO.sleep(5.seconds).fork.flatMap(_.interrupt)
} yield assertTrue(exit.is(_.interrupted))
}

Deeply Nested Values

Sometimes we need to test values with more than one level of nesting. There is no difference in the way we test nested values:

import zio.test._

test("assertion of multiple nested values (TestLens#right.some)") {
val sut: Either[Error, Option[Int]] = Right(Some(40 + 2))
assertTrue(sut.is(_.right.some) == 42)
}

Custom Assertions

Using CustomAssertion we can create our own custom assertions for use in assertTrue. We can define custom assertions using the CustomAssertion.make method. This method takes a partial function from the type A to Either[String, B]. If the partial function is defined for the given value, it returns Right[B], otherwise it returns Left[String].

Here is an example of a custom assertion for a sealed trait and case classes:

import zio.test._

// Define the sealed trait and case classes
sealed trait Book
case class Novel(pageCount: Int) extends Book
case class Comic(illustrations: Int) extends Book
case class Textbook(subject: String) extends Book

// Custom assertion for Book
val subject =
CustomAssertion.make[Book] {
case Textbook(subject) => Right(subject)
case other => Left(s"Expected $$other to be Textbook")
}

// Usage
suite("custom assertions")(
test("subject assertion") {
val book: Option[Book] = Some(Textbook("Mathematics"))
assertTrue(book.is(_.some.custom(subject)) == "Mathematics")
}
)

In the above example, we define a custom assertion for the Book sealed trait. The custom assertion subject is defined to extract the subject from the Textbook case class. So then we can assert the subject of the Textbook case class.

More Examples

The assertTrue macro is designed to make it easy to write assertions in a more readable way. Most test cases can be written as when we're comparing ordinary values in Scala. However, we have a SmartAssertionSpec which is a collection of examples to demonstrate the power of the assertTrue macro.