trait GenPoly extends AnyRef
GenPoly
provides evidence that an instance of Gen[T]
exists for some
concrete but unknown type T
. Subtypes of GenPoly
provide additional
constraints on the type of T
, such as that an instance of Ordering[T]
or
Numeric[T]
exists. Users can also extend GenPoly
to add their own
constraints.
This allows construction of polymorphic generators where the the type is known to satisfy certain constraints even though the type itself is unknown.
For instance, consider the following generalized algebraic data type:
sealed trait Expr[+A] extends Product with Serializable final case class Value[+A](value: A) extends Expr[A] final case class Mapping[A, +B](expr: Expr[A], f: A => B) extends Expr[B]
We would like to test that for any expression we can fuse two mappings. We
want to create instances of Expr
that reflect the full range of values that
an Expr
can take, including multiple layers of nested mappings and mappings
between different types.
Since we do not need any constraints on the generated types we can simply use
GenPoly
. GenPoly
includes a convenient generator in its companion object,
genPoly
, that generates instances of 40 different types including primitive
types and various collections.
Using it we can define polymorphic generators for expressions:
def genValue(t: GenPoly): Gen[Any, Expr[t.T]] = t.genT.map(Value(_)) def genMapping(t: GenPoly): Gen[Any, Expr[t.T]] = Gen.suspend { GenPoly.genPoly.flatMap { t0 => genExpr(t0).flatMap { expr => val genFunction: Gen[Any, t0.T => t.T] = Gen.function(t.genT) val genExpr1: Gen[Any, Expr[t.T]] = genFunction.map(f => Mapping(expr, f)) genExpr1 } } } def genExpr(t: GenPoly): Gen[Any, Expr[t.T]] = Gen.oneOf(genMapping(t), genValue(t))
Finally, we can test our property:
test("map fusion") { check(GenPoly.genPoly.flatMap(genExpr(_))) { expr => assert(eval(fuse(expr)))(equalTo(eval(expr))) } }
This will generate expressions with multiple levels of nesting and polymorphic mappings between different types, making sure that the types line up for each mapping. This provides a higher level of confidence in properties than testing with a monomorphic value.
Inspired by Erik Osheim's presentation "Galaxy Brain: type-dependence and state-dependence in property-based testing" http://plastic-idolatry.com/erik/oslo2019.pdf.
- Alphabetic
- By Inheritance
- GenPoly
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- abstract type T
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()